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Introduction

Information systems handle typically large repositories of heterogeneous data, structured following
different, if overlapping, data models. Relational databases, temporal databases, information retrieval
systems (targeting document repositories, whether raw text or the web), data warehouses, object
databases, etc. In many, if not in most, cases, this will involve storing, removing, updating or accessing
numerical data or in performing numerical computations out of the information the repository may
contain. Numerical data and ordered domain types will be widespread, if not ubiquitous in the data
repositories. Their common denominator being their containing information about some domain.
Think in university professors. They earn a salary, have an age, a name, may be married or single,
teach courses, supervise students, write scientific papers, etc. Data sources from such a domain may
contain strings of characters, .pdf documents, integers, urls and so forth.
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Particularly, in the case of accessing information, we may want to mine the data for decision support
(a typical use case). We may want to automatically classify it (whether by supervides or usupervised
means), perform regression, concept learning. Or, simply, retrieve some piece of information we might
be interested in knowing (e.g. ”How many computer science professors are members of W3C?”).
In either case, retrieval should be optimal, in the sense that the greatest amount of data should be
retrieved (computed by the system) with the least space and time system resources (cf. [Elmasri2004]),
which is critical, given the massive amounts of data that we may have, ultimately, to process. This
constraint argues in favor of systems based on Relational database (DB) systems and database views
and ultimately, we believe, in ontology-based data integration.

In ontology-based data integration, an ontology Σ (actually, a set of data integrity constraints)
layer serves as a very high level representation or description of the data, which remains hidden to the
end user. Queries q, therefore, are formulated w.r.t. this conceptual model and run over incomplete
instances I: ontologies can be seen as view definitions over the sources and the incomplete instances
as (incomplete) retrieved global databases, that is, as the sets of corresponding virtual tables or
views that may not necessarily contain all the data of the sources (which may be infinitely many).
This can be performed following the global-as-view (GAV) approach to data-integration (cf.[Cali2004,
Calvanese2007D]). Logically, this amounts to considering 〈Σ, I〉 an incomplete database (or a knowledge
base K, a closely akin notion, cf. [Rosati2007, Calvanese2007D]), where query answering works under
the open world assumption (OWA) and is thus modelled as the following logical entailment problem:

〈Σ, I〉 |= q[t/x].

We believe, moreover, that this effort can be coupled with that of building controlled natural
language (say, English) interfaces (NLIDBs). Which entails, to a great extent (cf. [Thorne2007E]),
defining fragments of natural language (English), whose declarative sentences compositionally translate
into facts and constraints (and might be used to, for instance, add or update data) and whose questions
compositionally translate into formal queries, as has been done for OWL ontologies by the Attempto
project (cf. Attempto Controlled English, [Fuchs]) and as was proposed time ago by Clifford in
[Clifford1988]. Why? First, because using English is simpler than using, say, SQL (at least for a non-
expert, i.e. a non-IT enginneer). Second, because we use views. Therefore, the source schemas can
be disregarded when building the question/query, since the rewriting of these queries, built over the
ontology or global schema, w.r.t. these source schemas can be delegeated to the data integration system
(based on relational database technologies) running in the back end. The can enhance, therefore, both
the portability and the usability of the front end.

In this report we will look to two of the (many) logical problems that arise in this setting. Namely,
at the problems of query containment (QC) and query answering (QA) for conjunctive aggregate queries
(CQs + agg) in an incomplete information setting. These problems have been studied for relational
databases with complete information by, above all, Cohen et. al. (cf. [Cohen2007]) and SQL-like
bag semantics, which makes no sense in a data integration setting inasmuch as we have to collapse
different source tables into a single virtual table in the retrieved incomplete instance (cf. [Cali2004]).
We plan to look at their counterparts for incomplete databases, check for their decidability and, if so,
for their complexity class. Furthermore, as some corpora analysis shows, natural language questions
(to NLIDBs) that target databases with numerical data frequently express aggregate queries: we may
ask for an average, a sum, etc. (cf. [Thorne2007D]). Not to speak about how basic they are in other
settings, like data mining, data warehouses, etc (cf. [Elmasri2004]).

2



1 Relational Databases

What is a relational database (DB)? If we think for a moment in commercial database systems we
can say, to the best of our intuition: it is a set of records (or data) about a certain domain stored (or
structured) in tables, defined over a database schema (a set of so-called relation names) and satisfying
a certain number of integrity constraints or dependencies and over which queries (information requests)
are run or evaluated. Interestingly, this state of affairs can be modelled by logic, through the relational
data model (RDM) using the so-called unnamed view on relations (cf. [Abiteboul1995]), where database
states become finite first order interpretation structures. Queries and constraints, on the other hand,
can be captured by first order logic formulas. Thus, running a query against a database becomes
nothing else than evaluating a formula over one of the finite models of the dependencies.

1.1 Databases

A database schema R = {R1, ..., Rn} is a finite set of relation names with an associated arity (an
integer n ≥ 0). In addition, let Dom denote a (possibly) countably infinite non-empty set of constants
called domain, then: a tuple over Dom is every t ∈ Domn, for some n ∈ N and a relation instance of
a relation name R of arity n is a relation R(I) ⊆ Domn (a set of tuples). In other words, database
records are modelled as tuples of contants and tables as n-ary relations. Given this, we can define what
a database is: a database instance I over schema R is a finite set of relation instances whose active
domain is the finite set adom(I) ( Dom of (pairwise distinct) domain constants occuring among the
relations in I. In other words, it is a finite first order structure I = 〈adom(I); {Ri(I)}i∈[1,n]〉 over the
schema R which is, essentially, a (finite) first order logic signature (cf. [Abiteboul1995, Vardi1982]).
The integer #(adom(I)) is called the size of the instance I. We will denote by Inst(R) the class of all
such structures. In brief, database records are modelled as tuples of contants, tables as n-ary relations,
schemas as first order signatures and, last but not least, database states as schema instances. Domains
model, on the other hand, their domains of interest. By assumption, a DB is meant to exhaust all the
information of its domain of interest, i.e., to be complete.

1.2 Conjunctive Queries

Now that we have characterized databases, we must do the same with queries. Queries are a way of
specifying, declaratively, a request for information stored in a database. As such, they are meant to
(so to speak) unambigously define the data (a set of tuples) we seek to retrieve, independently of the
algorithms set to actually carry on with these tasks and which remain hidden to the end user, as is the
case with SQL, the industry standard for relational query languages. A first order logic abstraction
of the most common and simplest SQL queries is provided by the class of conjunctive queries (CQs),
which correspond to the SELECT-FROM-WHERE fragment of SQL with, eventually, inequalities and
numerical comparisons. This class lies, basically, within the existential-positive fragment of FOL (cf.
[Abiteboul1995]). By covering boolean disjunction we will extend this class to the class of unions of
conjunctive queries (UCQs), corresponding to the SELECT-FROM-WHERE-UNION fragment of SQL.

1.2.1 Syntax

A conjunctive query (CQ) q with comparisons over a relational schema R is an expression of the form:

q(x)← ∃y(Ψ(x,y) ∧Υ(x,y))

3



where x is a possibly empty finite sequence of distinguished variables. The length of the sequence x is
called the arity of the query. The expression to the left of ← is called the head of the query and the
expression to the left its body. Distinguished variables occur free in the body. We denote by V ar(q)
the set of all the variables in q, distinguished or other. Ψ(x,y) is a conjunction of atoms and Υ(x,y)
a conjunction of comparisons of the form tρt′, with ρ ∈ {<,>,=,≤,≥}. A query without comparisons
is said to be relational. The size of q, denoted size(q), is simply |∃y(Ψ(x,y) ∧Υ(x,y))|, i.e., its rank
or, put otherwise, the depth of its parse tree. When the sequence x of distinguished variables is empty
we say that the query is boolean. Conjunctive queries can be extended to cover boolean disjunction
giving way to unions of conjuntive queries (UCQs) of the form:

q(x)←
k

∨

i=0

∃yi(Ψi(x,yi) ∧Υi(x,yi))

of size size(q) = |(Ψ1(x,y1) ∧Υ1(x,y1))|+ ...+ |(Ψk(x,yk) ∧Υk(x,yk))|. Note that CQs ( UCQs.

1.2.2 Semantics

Finally, the result set or semantics of a CQ or UCQ q on input database I, denoted q(I), is built by
collecting the values of all the substitutions σ : V ar(q)→ Dom under which I is a model of qσ. This
is formally defined as follows:

q(I) := {σ(x)|I |= qσ}

Note that if q is boolean, then: (i) If q evaluates to truth in I, q(I) = {〈〉}. (ii) If q evaluates to false in
I, q(I) = ∅. In other words, the empty tuple and the empty set simulate the behavior of truth values
in the database setting. Inspired by this analogy, it is standard to say a CQ or UCQ q is satisfiable if
q(I) 6= ∅ for some instance I and unsatisfiable otherwise.

Example 1.1. Let R := {Loves2} be a schema. An instance over R will then be

I := {Loves(Julian,Mary), Loves(Lucas,Mary)}.

A CQ an expression
q := q(y, x)← Loves(x, y)

of semantics q(I) := {〈Mary, Julian〉, 〈Mary, Lucas〉} and of size |Loves(x, y)| = 1. It corresponds to
the SQL query

SELECT Loves.2, Loves.1
FROM Loves

and is read “list all the people who love each other”.

1.3 Basic Properties of Conjunctive Queries

In this section we recall some well-known basic properties of CQs that will be using later. Queries in
CQ are always satisfiable and monotone and their result set is always finite (and hence is computable).
We introduce also the notion of containment among CQs, upon which equivalence is defined. We will
devote some lines also to the computational complexity of query answering over relational databases
and of query containment, since these two problems provide a baseline for all the other settings of
query containment and answering (which are a generalization of this one). These proeprties also hold
for UCQs, since they depend on properties true within the existential postive fragment of FOL, to
which both classes belong (cf. [ChangKeisler]).
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Proposition 1.1. Let q, q′ be CQs over R and I,J ∈ Inst(R). Then:� If I ⊆ J, then q(I) ⊆ q(J). (Monotonicity).� q(I) is always finite (Finiteness).

Proposition 1.2. (Satisfiability) Let q be a CQ over R; then there exists I ∈ Inst(R) s.t. q(I) 6= ∅.

Remark 1.1. Proposition 1.1 (i.e. finiteness) has a very important consequence, namely that, when
evaluating a query q over an instance I, we need only to pay attention to those substitutions that
range over adom(I) – the finite set of functions V ar(q)adom(I) of cardinal #(adom(I))#(V ar(q)) which
is polynomial on #(adom(I)) and exponential on #(V ar(q)) (and hence on size(q)).

1.3.1 Containment and Equivalence

Containment is a fundamental relation that holds among formal queries, and in particular among
CQs (and UCQs). A conjunctive query q over is said to be contained by a conjunctive query q, in
symbols q ⊑ q′, iff for every I ∈ Inst(R) it holds that q(I) ⊆ q′(I). They are said to be equivalent,
denoted q ≡ q′, whenever q ⊑ q′ and q′ ⊑ q. In general, the problem of query containment is typically
formulated as follows:� Input: Two arbitrary queries q and q′ over a schema R.� Question: Does q(I) ⊆ q′(I), for all I ∈ Inst(R) ?

As it is well known (cf. [Abiteboul1995]), containment and equivalence are decidable though un-
tractable. Furthermore, the addition of comparisons yields containment and a fortiori equivalence
even more difficult:

Proposition 1.3. (Complexity of Containment) Query containment (and hence equivalence) for
relational CQs is NP-Complete and is Π2

P
-Complete for CQs with comparisons.

1.3.2 Complexity of QA

To study the computational complexity of conjunctive query evaluation we need to consider the decision
problem defined as follows: given (i) a tuple t over Dom, (ii) a CQ q and (iii) an instance I, check
whether t ∈ q(I). Following Vardi (cf. [Vardi1982]) we can subdivide this decision problem into three
by considering some of its inputs constant:� When we fix the size of q, we speak about data complexity, where computational complexity is

a function on adom(I).� When we fix the size of I, we speak about query complexity, where computational complexity is
a function on size(q).� When neither is assumed to be constant, we speak about combined complexity, where computa-
tional complexity is a function on both adom(I) and size(q).

Remark 1.1 immediately tells us that the first one is tractable and the other two, intracatable. More
precisely:

Proposition 1.4. (Complexity of QA) Query answering for relational CQs is in LOGSPACE
w.r.t. data complexity and NP-Complete w.r.t. both query and combined complexity.
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1.4 Dependencies

Dependencies are ways of imposing some constraints on the possible states that a database may assume,
in other words, in the way data is to be structured and are an essential part of database practice as
well as of incomplete information settings as we shall soon see. Formally, a dependency δ is a first
order sentence of the form:

∀x∀y(Φ(x)→ ∃zΨ(y, z))

where x and y are sequences of variables and z is the sequence of variables occuring in x but not in
y. Both Φ and Ψ are conjunctions of atoms of which Φ might be possibly empty. Φ and Ψ contain
relational atoms of the form R(w) or equality atoms of the form w = w′, w 6= w′. There are many kind
of dependencies. For our present purposes we will limit ourselves the following:� Inclusion dependencies (IDs), which are sentences of the form:

∀x∀y∀z(Φ(x,y)→ Ψ(x, z)).� Functional dependencies (FDs), which are sentences of the form :

∀x∀y∀z∀w(Φ(x,y,w) ∧ Φ(x, z,w)→ y = z).� Key dependencies (KD), which are sentences of the form:

∀y∀z∀w(Φ(y,w) ∧ Φ(z,w)→ y = z).� If Ψ contains no occurrences of = or 6= is ts called a tuple generating dependency (TGD).

Note that KDs are a special case of FDs. Dependencies are included in the undecidable (w.r.t. sat-
isfiability) ∀∗∃∗ prefix class of FOL formulas - and IDs in the decidable ∀∗ class. A key dependency
∀y∀z∀w(Φ(y,w) ∧Φ(z,w)→ y = z) and an inclusion dependency ∀x∀y∀z(Φ′(x,y)→ Ψ′(x, z)) are
said to be non conflicting whenever Ψ′(x, z) and neither Φ(y,w) nor Φ(z,w) coincide. When one
puts together conflicting IDs and KDs one gets the so-called foreign key dependencies (FKDs). Last,
but not least, IDs are required to be TGDs.

Example 1.2. The following are two examples of dependencies over the relational schema R :=
{Man1,MarriedMan1, Loves2}, two IDs and a KD, respectively:

∀x∀y(Man(x)→ Loves(x, y)),(1)

∀x(MarriedMan(x)→Man(x)),(2)

∀x∀y(Man(x) ∧Man(y)→ x = y).(3)

In (1) as the reader may remark, only the variable x is involved in the inclusion. Note moreover that
ID (1) and KD (3) are non conflicting, but that ID (2) and KD (3) are conflicting. As the reader may
well see, (1) and (2) are TGDs too.

When dependencies are present, as in the case in database systems, containment has to be rela-
tivized to them, which has the effect of rendering the problem computationally more expensive. Two
queries q and q′ over R are said to be contained w.r.t. a set of dependencies Σ over R, denoted q ⊆Σ q′,
iff for every instance I such that I |= Σ it is the case that q(I) ⊆ q′(I). This problem is computationally
very difficult and, in general, undecidable:

Proposition 1.5. (Containment with Dependencies) Query containment w.r.t. IDs is NP-
Complete, w.r.t. non-conflicting IDs and KDs it is PSPACE-Complete and undecidable w.r.t.
arbitrary dependencies.
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1.5 Genericity

The property of generitity conveys the idea that the semantics of a query is invariant under certain
specific families of mappings (cf. [LibkinC]). Let φ : Dom → Dom be a function. The function
φ can be extended to relation and database instances as follows: φR(I) := {φ(t)|t ∈ R(I)} and
φI := {φR(I)|R(I) ∈ I}. Assume now that 〈Dom ≤Dom〉 is an ordered domain and let φ be as above.
Let I be an instance over R and q a query. Then:� The query q is said to be generic iff φ is bijective and q(φI) = q(I).� The query q is said to be monotone generic iff φ is strictly monotone increasing w.r.t. ≤Dom

and q(φI) = q(I).� The query q is said to be locally generic iff φ is strictly monotone increasing (again, w.r.t. ≤Dom)
from adom(I) to Dom and q(φI) = q(I).

Proposition 1.6. Let q, q′ be two generic (resp. monotone and locally generic) queries over a schema
R and let I ∈ Inst(R). Let furthermore φ be a function from Dom to Dom. Then q(I) = q′(I) iff
q(φI) = q′(φI).

Proposition 1.7. (Genericity of CQs and UCQs) Relational CQs (and UCQs) are generic and CQs

with comparisons but no constants are monotone generic.

2 Incomplete Databases

As we said before, DBs contain complete information. Which is to say, any fact regarding any piece
of data (and by extension all their properties) which is absent from the database is considered as
false. Every dependency δ ∈ Σ must be thus relativised to adom(I), which means that I must be
the unique model of Σ up to isomorphism. This assumption is known as the closed world assumption
(CWA). Incomplete databases arise when we drop this assumption and stick to the so-called open
world assumption (OWA). When this happens, we start reasoning about classes of possible database
states, namely all of those that, while satisfying the dependencies Σ, extend the (incomplete) database
instance I.

We define an incomplete database as a pair K = 〈Σ, I〉, where Σ is a set of dependencies and
I a database instance. The active domain of K, denoted adom(K), is simply the active domain of
its incomplete database instance, i.e., adom(K) := adom(I). Denote Sen(R) the set of all possible
FOL sentences (closed formulas) that can be built over schema R. By analogy with the theory of logic
databases, we can consider K as a logical theory over a schema (a FOL signature) R, i.e., K ⊆ Sen(R).
In other words, Σ can be seen as a universally quantified set of axioms or rules, the intensional database
(IDB), and I as a set of facts, i.e., of ground atoms, the extensional database (EDB), as suggested by
Abiteboul et. al. in [Abiteboul1995]. We will be exploiting this similarity frequently, by allowing
instance I to lead a double life as a set of facts, an EDB, and a first order structure.

In this setting query answering is reformulated as a logical entailment problem. We must now check
if the class of models Mod(K) of a knowledge base K = 〈Σ, I〉 are contained (in set theoretical terms)
by the models Mod(qσ) of the closed query qσ, viz. whether K |= qσ, which is to say, following the
definition of entailment in FOL, to check if Mod(K) ⊆ Mod(qσ). This is basically a generalization
of QA to deal with an incomplete information setting. Accordingly, the result set q(K) of a UCQ q
evaluated over an incomplete database K is built by collecting the values of all the closed substitutions
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σ : V ar(q)→ Dom under which q is logically entailed by K, viz.,

q(K) := {σ(x)|K |= qσ}.

This definition corresponds to the certain answers semantics for queries under incomplete information
(cf. [Abiteboul1995, Cali2003, Abiteboul1998]), as can e seen from its trivial characterization in terms
of the intersections of the semantics of query q over every instance J containing I and satisfying Σ.

Example 2.1. Take the schema R := {Loves2,Man1,MarriedMan1}. An incomplete database can
be defined over this schema by choosing as set of dependencies Σ :=

{∀x(MarriedMan(x)→Man(x)),

∀x(Man(x)→ ∃Loves(x, y) ∧Woman(y)),

∀x(Man(x)→ ¬Woman(x))}.

and as an incomplete instance the set I :=

{MarriedMan(Julian),

Man(Lucas),

Loves(Julian,Mary),

Loves(Lucas,Mary)}.

To compute q(K), we compute first the answer set of each J |= K and then we pick their intersection
- a set that need not be necessarily finite and computable:

Proposition 2.1. Let q be a query over R and K = 〈Σ, I〉 a KB over. R. Then it holds that:

q(K) =
⋂

I⊆J

J|=Σ

q(J).

But then, quid about containment and equivalence? We must redefine these two relations as well to
make them fit this new framework. Let R be a schema. We say that a query q over is (set) contained
by a query q′ over under a incomplete information setting iff for all K over R it is the case that
q(K) ⊆ q′(K). However, as the following lemma shows, there is no general increase in complexity
when equivalence among queries is defined w.r.t. any arbitrary knowledge base. This only happends
when we fix a particular set of dependencies and reason about containment and equivalence w.r.t. that
fixed set:

Lemma 2.1. (Reduction to Instance Equivalence) For every K = 〈Σ, I〉, q and q′ CQs (or UCQs)
over R, it holds that q(K) = q(K) iff q ≡ q′.

Proof. (⇒) The assumption holds in particular when Σ = ∅, in which case, by proposition 2.1, we
need only to prove that:

⋂

I⊆J

q(J) = q(I)

because any instance J is a model of Σ, of the empty set. Let t ∈
⋂

{q(J)|I ⊆ J}; as I ⊆ I, t ∈ q(I),
i.e.

⋂

{q(J)|I ⊆ J} ⊆ q(I). Let t ∈ q(I) and let J be an instance such that I ⊆ J. By monotonicity
of CQs, q(I) ⊆ q(J) and therefore t ∈ q(J) for every instance J s.t. I ⊆ J, i.e. q(I) ⊆

⋂

{q(J)|I ⊆ J}.

8



Note that I in 〈∅, I〉 is an arbitrary instance. Hence, by applying the same reasoning to q′, we deduce
that q(I) = q′(I), for all I, i.e., q ≡ q′.

(⇐) Assume that q ≡ q′ and let I be an instance. Then it holds that:

q(I) = q′(I) implies
⋂

I⊆J

q(J) =
⋂

I⊆J

q′(J),

implies
⋂

I⊆J

J|=Σ

q(J) =
⋂

I⊆J

J|=Σ

q′(J), for every Σ.

That is (proposition 2.1), q(K) = q′(K), for every K, as we wanted. 2

Remark 2.1. Answer sets may not be, in general, finite, because CQs are now being evaluated
against the possibly infinite (even uncountably infinite) family of models of a set of dependencies.
This prevents us from reasoning solely in terms of adom(K). Denote, given q and K, qa(K) the
semantics of q where substitutions range not over Dom, but over the finite set adom(K) ( Dom.
Then, clearly qa(K) ⊆ q(K), but the converse is false. To see this, consider K and q defined as
follows: put Σ := {∀y∃x∃z(R(x, y) → R(y, z))}, I := {R(c0, c1)} and q := q(y) ← ∃xR(x, y). Then
q(K) = {〈ci〉}i≥1, which is infinite, but q(K) = {〈c1〉}.

3 Aggregate Queries

In this section we will proceed to define the class of aggregate conjunctive queries and of their unions
(CQs + agg and UCQs + agg resp.), which constitute a strict superclass of CQs and UCQs. But, why?
For many reasons. Aggregate queries involve operations such as counting the number of a certain
collection of records, computing an average, making a sum, etc. These kind of operations become
commonplace as soon as the database domain is ordered or contains numerical data. Indeed, empirical
studies show that they become very frequent in user questions and queries directed to, say, geographical
databases (cf. [Thorne2007D]). An aggregate query in SQL looks as follows:

SELECT Man.1, COUNT(Loves.2)
FROM Man, Loves
WHERE Man.1 = Loves.1
GROUP BY Man.1

where the GROUPBY clause defines a collection of tuples, the collection of women that each man
loves, over which the aggregate function (COUNT) is computed. The attribute Man.1 is known as the
grouping attribute. The query is read as “for each man, count the number of people he loves”. We
can also drop the GROUPBY clause and the grouping attribute and still have an aggregate query, e.g.

SELECT COUNT(Loves.2)
FROM Loves

which reads “count all those who are loved by somebody”. Indeed, the classes CQs + agg and UCQs +

agg of queries correspond, respectively, to the SELECT-FROM-WHERE-GROUP BY-SUM-COUNT-MIN-

MAX and to the SELECT-FROM-WHERE-UNION -GROUP BY-SUM-COUNT-MIN-MAX fragments of
SQL (cf. [Abiteboul1995, LibkinB, Klug1982A]). As the reader may see, we need to enrich the syntax
of CQs to capture this grouping feature together with the aggregate functions themselves. We will do
this in the following section.
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The main property we will be focusing on will be that of containment and equivalence of aggregate
queries. Why? Because we want to know, ultimately, to what extent aggregate query equivalence
can be reduced to conjunctive query equivalence, which will provide us with an efficient procedure for
evaluating aggregate queries over incomplete data and, more precisely, over knowledge bases. This al-
gorithm, akin to the algorithm defined in [Cali2003], will proceed by equivalence-preserving rewritings
that compute a conjunctive query out of the aggregate query, rewrite it w.r.t. the dependencies (fol-
lowing a certain answers-preservings rewriting), evaluate it, and compute the values of the aggregates
at the very end.

3.1 Syntax

Since the head of a query may now contain syntactic objects other (and more complex) than variables
and constants, we start by defining terms and so-called aggregate terms. A term t is either a variable
or a constant. An aggregate term is an expression of the form α(y), where y is a finite sequence of
variables and α is either sum, count, min or max, viz., an aggregate function symbol. Given this,
we can now define what an aggregate query is: An aggregate query (CQ + agg) is a query of the form:

q(x, α(y))← ∃z(Ψ(x,y, z) ∧Υ(x,y, z))

where x are called the grouping variables and y, the aggregate variables. We further assume variables
(and constants) to be adequately typed, so that they range either over individual constants or numbers
(integers, rationals or reals). Moreover, the sequence y is also allowed to occur alone in the head of q.
We define analogously unions of aggregate queries (UCQs + agg). The notions of arity, size, boolean
queries, etc., are defined in a way analogous to that of conjunctive queries.

The conjunctive query that underlies an aggregate query can be obtained in a very simple way by
stripping it from its aggregate function symbol. We call this underlying conjunctive query the core
of the aggregate query q and denote it q̆: it is, formally, the conjunctive query obtained from q by
replacing its aggregate term α(y) by y (i.e. by the aggregate variables).

Example 3.1. The following are some examples of (relational) conjunctive queries, unions of con-
junctive queries and aggregate (count) queries:

q1(x, y)←Man(x) ∧ Loves(x, y)

q2(x, y)← Loves(y, x)

q3(x, count(y))←Man(x) ∧ Loves(x, y)

q4(x, count(y))← Loves(y, x)

q5(x, y)← (Man(x) ∧ Loves(x, y)) ∨ Loves(y, x)

q6(x, count(y))← (Man(x) ∧ Loves(x, y)) ∨ Loves(y, x)

As the reader may see q1 is the core of q3, q2 the core of q4 and q5 is a UCQ built out of q1 and q2 (and
the core of q6).

3.2 Aggregate Terms

For each UCQ q and each incomplete database K we define an equivalence relation ∼q over the
substitutions σ : V ar(q) → adom(K) as follows: σ ∼q σ′ iff σ(x) = σ′(x), that is, whenever two
substitutions map the grouping variable(s) onto the same constant(s). We denote [σ]q the equivalence
class represented by σ and V ar(q)/∼q

the resulting quotient set. Equivalence classes intuitively collect
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the groups associated to the values of each grouping variable. The equivalence relation ∼q gives rise,
for every substitution σ over the grouping variable(s) of an aggregate query q to the following set:

{θ(y)|θ ∈ [σ]q}.

Given a grouping assignment σ, we can define the evaluation of an aggregate term over a group [σ]q,
denoted α(y).[σ]q , for α ∈ {sum, count,min,max}, as follows:

max(y).[σ]q := max
θ∈[σ]q

θ(y)

min(y).[σ]q := min
θ∈[σ]q

θ(y)

count(y).[σ]q := #({θ(y)|θ ∈ [σ]q})

sum(y).[σ]q :=
∑

θ∈[σ]q

θ(y)

Remark 3.1. One can also view semantically aggregate functions as set-valued functions of the form
#: Pf (Dom) → N or α : Pf (Q) → Q, where α ∈ {

∑

,
∏

,min,max} and Pf(A) denotes the set of
finite subsets of a set A. Under this particular assumption, we can deduce some immediate properties.
Note that by convention, Q ( Dom (i.e., Dom is a set of numeric values and individual constants).
Let {ai}i∈[0,n] and {bj}j∈[0,m] be two finite families of pairwise disjoint finite subsets of, respectively,
R and Dom. Then it holds that:

∑

n
⋃

i=0

ai =
∑

a1 + ...+
∑

an,

∏

n
⋃

i=0

ai =
∏

a1 ∗ ... ∗
∏

an,

max
n
⋃

i=0

ai = max{max a1, ...,max an},

min

n
⋃

i=0

ai = min{min a1, ...,min an} and

#(

m
⋃

j=0

bj) = #(b1) + ...+ #(bm).

3.3 Semantics, Containment and Equivalence

Aggregate queries are run over numerical data and ordered domains. That is to say, that they are not
evaluated exclusively over a set Dom of individual constants, but also over totally ordered numerical
domains - i.e., over Dom and Q. We may further assume that Q has been given the structure of a
ordered field (i.e., the ordered field Q = 〈Q;≤Q; +Q, ·Q,−1

R; 0Q, 1Q〉 of the rationals), as is common in
everyday mathematics, and similarly for N or Z. Thus, numerical variables will range over Q (or its
subsets) and individual variables over Dom proper.

The result set for CQs + agg (resp. UCQs + agg) is defined in a manner analogous to that of CQs

(resp. UCQs) , only we need to exploit the semantics of aggregate terms:

q(K) := {(σ(x), α(y).[σ]q)|K |= q̆σ)}

11



where (σ(x), α(y).[σ]q) ∈ adom(K)n ×Q, for some n ∈ N, is the concatenation of σ(x) and α(y).[σ]q.
Two queries are said to be comparable iff they are of the same arity and agree on their distinguished
variables. In the case of aggregate queries this means that they agree on all of their grouping and
aggregate variables as well as on their aggregate terms.

Remark 3.2. The reader may have noticed that we are using a variant of the certain answers semantics
with sound sources, as defined for conjunctive queries w.r.t. incomplete databases (cf. [Cali2004,
Cali2003]). That is, given q and K over R we compute first the certain answers for q̆(K) and only
afterwards, [σ]q and the value of the aggregate function (whether sum, prod, count,min or max).
We notice that the certain answers semantics is perhaps one of the few, if not the only one that
makes sense for conjunctive queries in this setting. Suppose we did otherwise, i.e., that we were to
compute answer set of the aggregate query q itself over each J such that J |= K and only after compute
the intersection, instead of starting (as in our definition with q̆. Such Js are finite structures over a
countably infinite universe Dom s.t. Q ⊆ Dom. As there are countably many such instances, we can
enumerate them, i.e., collect them into a family {Ji}i∈N. But then it would hold that for some i, j ∈ N,
q(Ji) 6= q(Jj), whence q(Ji) ∩ q(Jj) = ∅. Therefore, q(K) = ∅, since for every set A, A ∩ ∅ = ∅ (the
null set is absorbant for set intersection), and this would make no sense: all agreggate queries would
be unsatisfiable.

Given this, we can now state the properties that interests us: containment and equivalence. We
say that two comparable aggregate queries q, q′ over a schema R are contained under set semantics,
denoted q ⊑s q′, iff for every incomplete database K over R we have that:

q(K) ⊆ q′(K).

Equivalence, denoted ≡s, is defined as the symmetric closure of ⊑s.

Example 3.2. When we evaluate the queries from example 3.1 over the incomplete database of
example 2.1 we get:

q1(K) = {〈Lucas,Mary〉, 〈John,Mary〉},

q2(K) = {〈Mary, John〉, 〈Mary, Lucas〉},

q3(K) = {〈Lucas, 1〉, 〈John, 1〉},

q4(K) = {〈Mary, 2〉},

q5(K) = {〈Lucas,Mary〉, 〈John,Mary〉,

〈Mary, John〉, 〈Mary, Lucas〉}.

q6(K) = {〈Lucas, 1〉, 〈John, 1〉, 〈Mary, 2〉}.

In the case of q3, for instance, consider the substitutions σ1 := {x 7→ Lucas} and σ2 := {x 7→ John}.
If we look carefully at adom(K) we can see that {θ(y)|θ ∈ [σ1]q3} = {θ′(y)|θ′ ∈ [σ2]q3} = {Mary},
whence count(y).[σ1]q3 = count(y).[σ2]q3 = 1. Notice that q5(K) = q1(K) ∪ q2(K) as one should
expect.

Remark 3.3. Note that the following (strict) inclusions hold: CQs ( UCQs ( UCQs + agg and
CQs ( CQs + agg.
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4 Equivalence of Aggregate Queries

In this section state results regarding the reduction of the equivalence of aggregate queries to that of
their cores (under set semantics). Core equivalence constitutes a sufficent but not necessary condition of
equivalence. However, it becomes a necessary condition when we restrict ourselves to purely relational
queries (i.e. without comparisons) or to relational queries with comparisons but no constants. In
both cases we will exploit the genericity of their cores. This problem (namely, equivalence) has been
thoroughly studied in particular by Cohen et al. in [Cohen2007] and by Chaudhuri and Vardi in
[Vardi1993] for the so-called bag and bag-set semantics. As the reader may recall, commercial database
engines and SQL itself rely on bags or multisets as main data-structures. Intuitively, a bag is like a set,
only that it admits repetitions. Database tables and result sets are bags. In a bag-set semantics, tables
become again, set-valued relations, but result sets, or, more exactly, groups, become bags. That is,
instead of an assigment σ over the variables of an aggregate query q giving way to a set {θ(y)|θ ∈ [σ]q},
it gives rise to a multiset {|θ(y)|θ ∈ [σ]q |}. However, when dealing with incomplete databases and, more
importantly, with knowledge bases (which can be considered a particular case of the former), we have
to manipulate sets and set-valued relations.

Lemma 4.1. (Sufficiency of core equivalence) Let q and q′ be two relational aggregate queries
with or without constants. Then q̆ ≡ q̆′ implies q ≡s q′.

Proof. We will show the result only for sum queries, the other cases are analogous. Let q, q′ be two
sum queries whose cores are equivalent. Then, for all I:

(4) q̆(I) = q̆′(I).

Assume w.l.o.g that {x} is the set of grouping variables and {y} that of aggregate variables. We have
to prove that q(K) ⊆ q′(K) and q′(K) ⊆ q(K). We will only prove the first claim, the other being
symmetrical. We claim that for every tuple 〈c, n〉 ∈ adom(K)×Q with σ(x) = c and

∑

θ∈[σ]q
θ(y) = n

and every substitution σ over V ar(q) s.t. K |= q̆σ there exists a substitution σ′ over V ar(q′) s.t.
K |= q̆σ′ and:

〈σ(x),
∑

θ∈[σ]q

θ(y)〉 = 〈σ′(x),
∑

θ′∈[σ′]q′

θ′(y)〉,

which entails q(K) ⊆ q′(K). Let σ be a substitution over V ar(q) s.t. K |= q̆σ. Let J |= K, then J
is an instance such that J |= q̆σ and by (4) there exists a substitution σ′ over V ar(q′) that coincides
with σ over x, that is, such that σ(x) = σ′(x). Furthermore, since J was arbitrary, K |= q̆′σ′. We thus
only need to show that:

∑

θ∈[σ]q

θ(y) =
∑

θ′∈[σ′]q′

θ′(y),

which is true whenever
{θ(y)|θ ∈ [σ]q} = {θ′(y)|θ′ ∈ [σ′]q′}.

As before, there are two symmetrical cases to consider, so we will prove only the first. Let θ ∈ [σ]q . We
claim that there exists a θ′ ∈ [σ′]q such that θ′(y) = θ(y). Put θ′ = θ ↾ {x, y}, i.e. θ′ is the restriction
of θ to {x, y} and hence a substitution over V ar(q′) too since {x, y} ⊆ V ar(q) ∩ V ar(q′). Clearly, by
definition, θ(y) = θ′(y). Furthermore, σ′(x) = σ(x) = θ(x) = θ′(x), whence θ′ ∈ [σ′]q′ . This closes the
proof. 2

Cohen et al. in [Cohen2007] proved that for relational max, min or count queries, equivalence
(under set semantics) is equivalent to core equivalence:
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Rel Rel + Cons Rel + ≤ Rel + ≤ + Cons
max(min) Yes Yes Yes No

count Yes Yes Yes No
sum Yes Yes Yes No
prod Yes Yes Yes No

Figure 1: reduction to core equivalence

Proposition 4.1. (Cohen et. al.) Let q, q′ be two comparable relational max (or min) queries.
Then q ≡s q

′ if q̆ ≡ q̆′.

Proposition 4.2. (Cohen et al.) Let q, q′ be two comparable relational count queries. Then q ≡s q
if q̆ ≡ q̆′.

4.1 Queries with Comparisons but no Constants

We start by looking at the necessary conditions for equivalence of relational aggregate queries with
numerical comparisons. The argument is based on the monotonic genericity and the local genericity
of their cores, plus some algebraic properties of numerical domains. Note that by lemma 2.1 reasoning
over incomplete databases (under OWA) can be reduced to reasoning over database instances (under
CWA), when equivalence is at stake.

Lemma 4.2. Let q, q′ be two comparable relational sum queries with comparisons but without con-
stants. Then q ≡s q implies q̆ ≡ q̆′.

Proof. The proof is similar to the proof by Cohen et al. in [Cohen2007]. We reason by contraposition.
Let q and q′ be two comparable sum queries over a signature R and suppose that q̆ 6≡ q̆′, that is, that
there exists some instance I over R such that q̆(I) 6= q̆′(I). Assume, moreover, that {x} is the set of
grouping variables {y} and that of aggregate variables (i.e. q and q′ are of arity n = 2). This means,
w.l.o.g. that there is some tuple 〈c, n〉 ∈ adom(I)×adom(I) and some substitution σ over V ar(q) with
σ(x) = c, σ(y) = n, such that 〈c, n〉 ∈ q̆(I) but 〈c, n〉 6∈ q̆′(I). Now, the latter is true when, and only
when, for every σ′ over V ar(q′) we have that:

(i) σ(x) 6= σ′(x), or

(ii) σ(x) = σ′(x) and σ(y) 6= σ′(y).

If (i) holds, then, clearly, q 6≡s q
′. Otherwise, if (ii) holds, we have to show that

(5)
∑

θ∈[σ]q

θ(y) 6=
∑

θ′∈[σ′]q′

θ′(y)

for every substitution σ′ over V ar(q′) that coincides with σ over x. Suppose towards contradiction
that the two sums coincide for some σ′ over V ar(q′). By (ii) we know that that

(6) n 6∈ {θ′(y)|θ′ ∈ [σ′]q′}.
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Rel + Cons Rel + ≤
max(min) NP-Complete Π2

P
-Complete

count NP-Complete Π2
P
-Complete

sum NP-Complete Π2
P
-Complete

prod NP-Complete Π2
P
-Complete

Figure 2: complexity of equivalence

To derive an absurdity we exploit the local genericity of conjunctive queries (cf. [LibkinC]) over ordered
domains. Let m0 < m1 < ... < mk be a chain of the numerical constants of adom(I), with n = mi0 ,
for some i0 ∈ [0, k]. Let M := mk and define φ : adom(I)→ Dom by putting

φ(mi) := M i.

Recall that we are assuming that the sums of q and q′ should agree for the group of c. This will be
true whenever:

k
∑

i=0

µiM
i =

k
∑

i=0

µ′
iM

i,

where µi, µ
′
i ∈ {0, 1}, for i ∈ [0, k], that is, their M -adic representations should agree. Moreover, by

construction (i.e. by properties of M -adic representations of numbers), µi = µ′
i, for all i ∈ [0, n]. Now,

θ(y) = n, for some θ ∈ σ, whence µi0 = µ′
i0

= 1. But then θ′(y) = n too, for some θ′ ∈ [σ′], which
contradicts (6). Hence (5) should hold too. 2

Lemma 4.3. Let q, q′ be two comparable relational prod queries without constants but with compar-
isons. Then q ≡s q implies q̆ ≡ q̆′.

Proof. The proof is similar to that of sum queries, so we will omit some of the details. As before, We
will assume that q̆ 6≡ q̆′, and hence that there exists an instance I, a substitution σ over V ar(q) mapping
x to c and y to n satisfying the same conditions as before. We need to define now a monotone function
φ : adom(I) → Dom on the basis of some function ψ : Q→ Z. Let again So, let m0 < m1 < ... < mk

be a chain of the numerical constants of adom(I). As before, put M := mk. Functions ψ and φ are
defined by:

ψ(mi) := M i;

φ(mi) := p
ψ(mi)
i .

Where pi is the i-est prime number. As the reader may check, φ is monotone increasing. Moreover,
the equivalence of the agreggate queries implies that

k
∏

i=0

p
µi·ψ(mi)
i =

k
∏

i=0

p
µ′

i·ψ(mi)
i

with µi, µ
′
i ∈ {0, 1}, for i ∈ [0, k]. Which, by the uniqueness of prime factorisation, implies that

µi = µ′
i, for all i ∈ [0, k]. The argument then proceeds as before. 2

Remark 4.1. Note that any finite sequence 〈q1, ..., qk〉 of rationals can be monotonically mapped by
an order preserving function f onto a sequence 〈f(q1), ..., f(qk)〉 of integers. Rationals can be seen as

15



pairs of integers, i.e., qi = ai

bi
, with ai, bi ∈ Z, for i ∈ [1, k]. Define f : [Q]k → [Z]k, where [A]k denotes

the set of finite sequences of length k of elements of set A, by putting:

f(qi) := qi ·
k

∏

i=1

bi.

Then, clearly, q1 ≤Q ... ≤Q qk only if f(q1) ≤Z ... ≤Z f(qk).

4.2 Relational Queries

Now we turn to relational queries. We will strongly rely on their genericity.

Proposition 4.3. For any two finite sets Γ := {m1, ...,mk} ⊆ Q and ∆ := {n1, ..., nk} ⊆ Q of the
same size, such that Γ 6= ∆ and such that αΓ = α∆, for α ∈ {

∑

,
∏

}, there exists a bijection φ : Q→ Q

s.t.� {φ(m1), ..., φ(mk)} 6= {φ(n1), ..., φ(nk)} and� α{φ(m1), ..., φ(mk)} 6= α{φ(n1), ..., φ(nk)}.

Proof. Let Γ := {m1, ...,mk} and ∆ := {n1, ..., nk} be two finite sets of rationals of the same size s.t.
αΓ = q ∈ Q, for α ∈ {

∑

,
∏

} and define φ : Q→ Q as follows:

φ(m) :=











q if m = m1,

m1 if m = q,

m otherwise.

Clearly, φ is a bijection, {φ(m1), ..., φ(mk)} 6= {φ(n1), ..., φ(nk)} and, finally, α{φ(m1), ..., φ(mk)} 6=
α{φ(n1), ..., φ(nk)} as wanted. 2

Lemma 4.4. Let q, q′ be two comparable relational sum or prod queries with or without constants.
Then q ≡s q implies q̆ ≡ q̆′.

Proof. Let q and q′ be two aggregate queries over a schema R. Assume that q ≡ q′ and suppose for
contradiction (see lemma 2.1) that for some I ∈ Inst(R), q̆(I) 6= q̆′(I). This means that there should
be some σ over V ar(q) s.t. for every σ′ over V ar(q′), σ(x) = σ′(x) and

(7) α
θ∈[σ]q

θ(y) = α
θ′∈[σ′]q′

θ′(y)

with α ∈ {
∑

,
∏

} and

(8) {θ(y)|θ ∈ [σ]q} 6= {θ
′(y)|θ′ ∈ [σ′]q′}.

We need to consider two cases:� Either #({θ(y)|θ ∈ [σ]q}) > #({θ(y)′|θ′ ∈ [σ′]q′}). Recall that q̆, q̆′ are CQs, they are generic.
Define a mapping φ : Dom→ Dom by putting:

φ(m) :=

{

m+ 1 if m ∈ Q,

m otherwise.
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We can see that φ is a bijection and that

α
θ∈[σ]q

φ(θ(y)) > α
θ′∈[σ′]q′

φ(θ′(y)),

whence q(〈∅, φI〉) 6= q′(〈∅, φI〉), which is absurd, since 〈∅, φI〉 is an incomplete database over R
and q and q′ are, by hypothesis, equivalent.� Or #({θ(y)|θ ∈ [σ]q}) = #({θ(y)′|θ′ ∈ [σ′]q′}). Now, equations (7) and (8) together with
proposition 4.3 imply the existence of a bijection φ : Dom → Dom (which is the identity over
the non-numeric constants of Dom) such that

α
θ∈[σ]q

φ(θ(y)) 6= α
θ′∈[σ′]q′

φ(θ′(y)).

As before, by genericity, it follows that q(〈∅, φI〉) 6= q′(〈∅, φI〉). Contradiction. 2

4.3 Reduction to Core Equivalence

From lemmas 4.1 - 4.4 and propositions 4.1 - 4.2 we immediately derive the following:

Theorem 4.1. (Reduction to core equivalence) Equivalence of aggregate sum, count, prod
min and max under set semantics is reducible to the equivalence (under, again, set semantics) of
their cores.

Furthermore, by considering the linearizations or linear expansions of conjunctive queries, as defined
by Cohen et al. in [Cohen2007], we can immediately derive the complexity of equivalence for aggregate
queries:

Corollary 4.1. The equivalence problem fore relational aggregate sum, count, prod min and max
queries under set semantics is NP-Complete and Π2

P
-Complete for queries with comparisons.

Remark 4.2. As the reader may recall, many different combinations of numerical values may add
up to the same number and two different groups might be equipotent. Similar considerations hold
for the maximum or the minimum of ordered sets. However, without constants or comparisons we
cannot constrain values such that this may happen. It is only when comparisons and constants are
both allowed to occur in the body of aggregate queries that these reductions do not hold, in general,
anymore. Consider the queries:

q(sum(x))← A(1) ∧A(2) ∧A(3) ∧ 1 ≤ x ∧ x < 3, and

q′(sum(x))← A(1) ∧A(2) ∧A(3) ∧ x = 3.

Take K := 〈∅, {A(1), A(2), A(3)}〉 and suppose that x ranges over Z. Then, clearly, q ≡s q′ but
q̆(I) 6= q̆′(I), since q̆(I) = {1, 2}, whereas q̆′(I) = {3}. That is, aggregate queries can be equivalent and
their cores not.

5 QA with Incomplete Information

In this section we will address the last remaining issue, namely, that of the complexity of the query
answering (QA) for conjunctive queries, which is the decision problem stated as follows:
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� Input: A query q, an incomplete database K = 〈Σ, I〉 and a tuple t over Dom.� Question: Does K |= q[t/x] ?

As we said, nothing warrants that the semantics of a query in an incomplete (or OWA) setting is a finite
set, unless we impose some conditions on incomplete databases, namely on their set of dependencies.
Given a CQ q and K, it has been shown (cf. [Klug1982B, Cali2003]) that when we restrict Σ to IDs,
FDs or to non-conflicting IDs and KDs, then q(〈Σ, I〉) is a finite set and can be therefore computed
(even if not efficiently). Furthermore, there exists a query qΣ, called the unfolding of q, s.t. q ≡ qΣ.
This unfolding qΣ is obtained by a procedure known as the chase that we will not describe, referring
the reader instead to [Abiteboul1995, Klug1982B]. It consists, intuitively, in rewriting the query q
w.r.t. the IDB relations of K, i.e. the relations R occurring in Σ but not in I (or in R). The size
size(qΣ) of qΣ might be exponential on size(q), but this does not affect data complexity.

5.1 Relational Queries

Proposition 5.1. Let K = 〈Σ, I〉 be an incomplete database over R with Σ a set of non-conflicting
IDs and KDs, IDs or FDs, q a UCQ over R and t a tuple over Dom. Then the following holds:

〈Σ, I〉 |= q[t/x] iff t ∈ q(〈Σ, I〉),

iff t ∈
⋂

I⊆J

J|=Σ

q(J),

iff t ∈ qΣ(I).

Based on this proposition we can conceive a sound, complete and terminating algorithm AnswerK

(cf. [Cali2003]) for conjunctive query QA:

Algorithm 1 AnswerK

1: procedure AnswerK(q, t, 〈Σ, I〉)
2: if t ∈ qΣ(I) then
3: return True;
4: else
5: return False;
6: end if
7: end procedure

This algorithm runs in time polynomial on #(adom(K)) and in space polynomial both on size(q)
and on size(q) and #(adom(K)). More precisely (cf. [Cali2003]):

Proposition 5.2. (Complexity of QA) QA over incomplete databases K = 〈Σ, I〉 for relational CQs

is: � In P on data complexity and PSPACE-Complete on both query and combined complexity when
is a set of IDs.� In P on data complexity if Σ is a set of FDs.� In P on data complexity and PSPACE-Complete on both query and combined complexity when
is a set of non conflicting KDs and IDs.

18



5.2 Queries with Comparisons

As we said before, aggregate functions are defined on the power set of ordered numerical domains.
Database active domains contain now a finite number of numerical values (such as integers, rationals
or reals). So too are their cores. But evaluating an aggregate query does not dramatically increase the
computational data complexity of QA. Given a group [σ]q of size m for a CQ + agg q and computed
over an instance I, computing the sum or the product will be of complexity O(m) and computing
either the maximum or the minimum, of complexity O(m · log2 ·m) (the complexity of sorting a table
or array). The question is then, what is the complexity of incomplete QA over an ordered domain,
when q is a CQ with comparisons (and constants)? In the case of relational databases, where CWA

holds, it will be in LOGSPACE, since q lies within FOL. Dependencies plus OWA turn the issue more
delicate. In order to consider this, we must first fix what we understand by an ordering. That is,
when a relational structure A = 〈A,RA〉 over a FOL signature (with identity) containing the diadic
predicate symbol R and where RA ⊆ A× A is called an order? When it satisfies any of the following
axioms:� A strict partial order or, simply, an order (O) is defined by the axioms:

∀x¬R(x, x) (irreflexivity)

∀x∀y∀z(R(x, y) ∧R(y, z)→ R(x, z)) (transitivity)� A total (T) relation by the axiom:

∀x∀y(R(x, y) ∨R(x, y) ∨ x = y) (tricotomy)� A dense (Den) relation by:

∀x∀y(R(x, y)→ ∃z(R(x, z) ∧R(z, y))� A Discrete partial order (Dis) is defined by the axioms:

∀x∃y(R(x, y) ∨ x = y)

∀x∃y(R(x, y) ∨ x = y) ∧ ∀z(R(x, z)→ R(y, z) ∨ z = y))

∀x(∀y(R(x, y) ∨ x = y) ∨ ∃z(R(x, z) ∨ x = z)∧

∧∀y(R(z, y) ∨ z = y)→ R(x, y) ∨ x = y ∨ y = z)� A relation has a least element (L) if it satisfies:

∃x∀yR(x, y)� A relation has a greatest element (G) if it satisfies:

∃y∀yR(x, y)� A partial order (PO) is defined by the axioms:

∀xR(x, x) (reflexivity)

∀x∀y(R(x, y) ∧R(y, x)→ x = y) (antisymmetry)

∀x∀y∀z(R(x, y) ∧R(y, z)→ R(x, z)) (transitivity)
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Remark 5.1. Note that, actually, we need only one kind of basic ordering. That is, POs can be built
or defined out of Os (and vice versa), provided our FOL signature contains the identity symbol. If R′

denotes a PO and R an O, we just need to add the (definitional) axiom ∀x∀y(R′(x, y)↔ (R(x, y)∨x =
y)). Note, furthermore, that POs are trivially dense, i.e., PO |= Den.

These axioms can be combined together into different theories, characterizing different kinds of
orderings like total orders (TO), total dense orders (TODen), orders with enpoints (OLG), etc. The
following theories lie within the ∀∗ fragment of FOL, and hence satisfy the finite model property (FMP)
that is, when they have a model, they have a finite model: Dis, TDis, O, TO, PO, TPO, DenPO,
TDenPO. Furthermore, since skolemezing L or G introduces only a constant (denoting the least or,
resp., the greatest element of the ordering, which must be, moreover, unique), this means that DisL,
DisG, DisLG, OL, OG, OLG, POL, POG, POLG, DenPOL, DenPOG and DenPOLG (together with their
associated total orders) satisfy too, modulo skolemization, FMP. This classification of orderings is
important in that it characterizes the kind of orderings we may impose on the (ordered) domain of an
incomplete database K. We may thus assume implicitly that, for K = 〈I,Σ〉 and T a theory of order,
T ⊆ Σ. Hence, if we restrict T to the above theories, we can, when looking at incomplete database
states or instances, focus on those that are finite (if always of an arbitrary finite size).

Theorem 5.1. Incomplete QA for relational CQs with comparisons is Co-NP-Hard in data com-
plexity.

Proof. The proof is by reduction of the complement of the 2 + 2-SAT problem for propositional logic,
which is known to be Co-NP-Complete and a a fortiori Co-NP-Hard. Let Φ be a 2 + 2 clause.
In that case, Φ = C1 ∧ ... ∧ Cn, with Ci = pi1 ∨ pi2 ∨ ¬pi1 ∨ ¬pi2, for i ∈ [1, n]. We encode Φ into an
incomplete database KΦ and a query qΦ. Remember that we always assume Dom to be totally ordered
by ≤Dom. Note that we are interested in unsatisfiable formulas, which means that by hypothesis, for
some i ∈ [1, n], the clause pi1 ∨ pi2 ∨¬pi1 ∨¬pi2 in Φ is unsatisifiable (i.e. has no model or truth value
assignment under which it evaluates to the truth). The reduction proceeds as follows:� For each clause Ci in Φ, we map positive litterals pij to a fact P (ci, p

+
ij) and negative litterals to

a fact N(ci, p
−
ij), for i ∈ [1, n], j ∈ {0, 1}.� We map formula Φ to the incomplete database KΦ := 〈ΣΦ, IΦ〉, where ΣΦ contains (at most)

the axioms of total order (with or without endpoints) and IΦ is the incomplete instance

{P (c1, p
+
11), P (c1, p

+
12), N(c1, p

−
11), N(c1, p

−
12),

...

P (cn, p
+
n1), P (cn, p

+
n2), N(cn, p

−
n1), N(cn, p

−
n2), Z(c)},

and to the (constant) conjunctive query qΦ with comparisons

q()← ∃x, y, z, w, t, s(P (x, y) ∧ y ≤ s ∧ P (x, z) ∧ z ≤ s∧

∧N(w,w) ∧ w > s ∧N(x, t) ∧ t > s ∧ Z(s)).

Computing KΦ and qΦ is polynomial on the number of litterals of Φ, which is k ≤ 4n. Furthermore,
the only input of the entailment problem whose size depends on k is IΦ. Therefore, we are reasoning
on the data complexity of QA. We now claim that

Φ is unsatisfiable iff KΦ |= qΦ.
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Ordering T ⊆ Σ Rel + ≤ + IDs

TO (TOLG,TOL,TOG) Co-NP-Complete
TDis (TDisLG,TDisL,TDisG) Co-NP-Complete
TPO (TPOLG,TPOL,TPOG) Co-NP-Complete

Figure 3: data complexity of incomplete QA for CQs with comparisons

(⇒) Suppose that KΦ 6|= qΦ. We want to show that Φ is satisfiable. We know that KΦ 6|= qΦ iff
there exists an instance J ∈Mod(KΦ) s.t. qΦ(J) = ∅. Now, since IΦ ⊆ J, this means that in J we find
all the atoms of IΦ, like, e.g. P (c1, p

+
11), N(c1, p

−
11), etc. On the other hand, qΦ(J) = ∅, i.e. J 6|= qΦ,

implies that, forall σ : V ar(q)→ Dom with σ(s) = 0, either J |= σ(p1) > σ(s) or J |= σ(p2) > σ(s) or
J |= σ(p3) ≤ σ(s) or J |= σ(p4) ≤ σ(s). On the basis of this, we define an assignment v : LITT→ {0, 1}
by putting

v(p) :=

{

1 if {σ(p) >Dom c} ⊆ J,

0 otherwise.

Where LITT denotes the family {pi}i∈N of propositional litterals. Clearly, for all i ∈ [1, n], it holds
that v(pi1 ∨ pi2 ∨ ¬pi1 ∨ ¬pi2) = 1, i.e., v(Φ) = 1.

(⇐) Assume that Φ is satisfiable. We want to build an instance J such that J |= KΦ and J 6|= qΦ.
If Φ is satisfiable this means that there exists a truth value assignment v : LITT → {0, 1} such that,
for all i ∈ [1, n], v(Ci) = 1. Instance J is the instance over R where, for i ∈ [1, n], j ∈ {0, 1},:

{P (ci, p
+
ij)} ⊆ J, when v(pij) = 1,

{N(ci, p
−
ij)} ⊆ J, when v(¬pij) = 1,

{pij >Dom c} ⊆ J, when v(pij) = 1 and

{Z(c)} ⊆ J.

Clearly, J |= 〈ΣΦ, IΦ〉, but qΦ(J) = ∅. Otherwise, suppose that J |= qΦ. If this were true, it would hold
that, for some substitution σ : V ar(q)→ Dom with {x 7→ c1, s 7→ 0, y 7→ p+

11} ⊆ σ, J |= P (σ(x), σ(y))
and J |= σ(y) ≤ σ(s). But if this were the case, then, by definition of J it would follow that v(p+

ij) = 1
and that therefore J |= σ(y) > σ(s). Contradiction. 2

Remark 5.2. We assumed 〈Dom ≤Dom〉 to be a total order, i.e. such that 〈Dom ≤Dom〉 |= T

(tricotomy). But the same argument would hold for ordered sets of numbers with or without endpoints,
such as 〈N,≤N〉, 〈Z,≤Z〉, 〈Q,≤Q〉, 〈R,≤R〉, or any totally ordered subset (whether finite or infinite)
thereof. Indeed, the constant c above ”behaves” like 0, by partitioning the ordering (which is linear
and can be thus pictured as a line). That is, for all c′ ∈ Dom, either c′ ≤Dom c or c′ >Dom c. This
partitioning in its turn mimics the behaviour of negation, thus yielding an exponential blowup when
evaluating the query over an incomplete database.

Lemma 5.1. Incomplete QA for relational CQs with comparisons and IDs is in Co-NP in data
complexity.

Proof. (Sketch) Assume that q is constant, that Σ contains only IDs and that T ⊆ Σ is a universal the-
ory of order, that is: TO (TOLG,TOL,TOG), TDis (TDisLG,TDisL,TDisG) or TPO (TPOLG,TPOL,TPOG).
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Rel ≤
max(min) P Co-NP-Hard

count P Co-NP-Hard
sum P Co-NP-Hard
prod P Co-NP-Hard

Figure 4: data complexity of incomplete QA for aggregate queries

We know that:
K 6|= q[t/x] iff t 6∈

⋂

I⊆J

J|=Σ

q(J),

that is, iff t 6∈ q(J) for some J |= 〈Σ, I〉. Now Σ contains only universal sentences. Hence it satisfies
FMP. In particular, its class of finite models coincides with the set of its Herbrand models. Denote
JH the greatest Herbrand model of K. Then the set {J ⊆ JH |J |= 〈Σ, I〉} is finite. Choose such an
instance J. Compute then q(J), which can be done in time polynomial on #(adom(K)). Finally, check
whether t 6∈ q(J), which can be done, again, in time polynomial on #(adom(K)). 2

From lemma 5.1 and theorem 5.2 we thus get:

Theorem 5.2. (Complexity of QA) Incomplete QA for relational CQs with comparisons, IDs and
universal theories of total order is Co-NP-Complete in data complexity.

5.3 Aggregate Queries

As we already said aggregate functions have no biog impact on the data complexity of QA. Given a
group [σ]q of size m for a CQ + agg q and computed over an instance I, computing the sum or the
product will be of complexity O(m) and computing either the maximum or the minimum, of, say,
complexity O(m · log2 ·m) (the complexity of sorting a table or array). This means that the complexity
results holding for CQs can be easily generalized to cover this broader class of queries. Furthermore,
since, by definition, aggregate functions are computed over the certain answers of their cores, we can
almost immediately define an algorithm for QA, algorithm 2 (Answerα

K
) below, based on algorithm

1 (AnswerK, see above).

Algorithm 2 Answer
α
K

1: procedure Answerα
K

(q, (σ(x), αθ∈[σ]qθ(y)), 〈Σ, I〉)
2: Γ← {(σ(x), θ(y))|θ ∈ [σ]q};
3: V al ← True;
4: for t ∈ Γ do
5: V al← V al and AnswerK(q̆, t, 〈Σ, I〉);
6: end for
7: return V al
8: end procedure

Proposition 5.3. The algorithm Answerα
K

is sound, complete and terminating. Furthermore, it
runs in time polynomial on #(adom(K)).
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From theorem 5.2 and propositions 5.3 and 5.2 we immediately derive the following:

Theorem 5.3. (Complexity of QA) Incomplete QA for CQs + agg is:� Co-NP-Hard in data complexity for queries with comparisons.� In P for relational queries.

Conclusions

Conjunctive aggregate queries (CQs + aggs) are grosso modo SELECT - FROM - WHERE - SUM -

COUNT - MIN - MAX - GROUP BY queries in SQL (to which we add the aggregate function prod,
which behaves in a way similar to sum) and ranging this time not only over non-numerical domains
but also over the ordered domain of the rational numbers Q and its subsets. We have considered
the following cases for conjunctive aggregate queries, namely queries that are (i) only relational, (ii)
contain numerical constants, (iii) contain numerical comparisons and (iv) contain both comparisons
and numerical constants. Furthermore, we have extended the existing results for relational databases
to an incomplete information setting. In doing so, we have achieved the following:� We have defined a semantics for evaluating aggregate queries in an incomplete information set-

ting. It is based on the certain answers semantics for CQs and relies on the well-known notion of
the core of an aggregate query q (i.e. its underlying CQ q̆). We have argued why this semantics
makes sense.� We have studied the computational complexity of the problems of query equivalence, QC and
QA for aggregate queries under this incomplete information setting.� In particular, we have reduced the equivalence problem of aggregate queries to that of their
(conjunctive) cores, which holds for cases (i), (ii) and (iii) above.� Finally, we have looked at the lower and upper computational complexity bounds of QA w.r.t.
all the possible orderings that we can define or conceive over Dom.

As immediate further work we intend to look at ways of expressing such queries in natural language and,
specifically, in controlled English, in a manner similar to [Thorne2007B] (i.e. extending Lite English).
Aggregations are expressed by definite noun phrases (NPs) such as ”the sum of all N”, ”the greatest
N”, ”the product of all N”, etc, where N stands for a plural or singular (common) noun. But is not
clear how these would interplay with the other natural language components so as to compositionally
translate questions into these formal queries.
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